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We consider the Tikhonov regularizer fi. of a smooth function fEH2m[0, 1],
defined as the solution (see [1]) to

min P-lul~+ If-ul~}, bO.
ueHm[O,l]

We prove that if

J= m, "" k < 2m - L

then

J=O, ...,m.

A detailed analysis is given of the effect of the boundary on convergence rates.
~I 1988 Academic Press, Inc.

1. INTRODUCTION

Let Hk[O, 1] be the Sobolev space

{u: [0, 1] -4 IR Iu, u', ..., U(k - I) are absolutely continuous and

r
1

(U(k)(t))2 dt < + oo}
Jo

and let 1·1 k denote the seminorm

lul~=r (U(k)(t))2 dt.
o

(1)
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Also, for m a positive integer and A> 0, let fA be the Tikhonov regularizer
(cr. [12J) off defined as the unique solution to the minimization problem

min . Plul~+lf-uI6}'
uEHmrO,I]

(2)

The existence and uniqueness offA is well known (see, for example, [8J).
The analysis of the properties of fA as A goes to zero are of fun,damental
importance in the study of convergence rates of smoothing splines as has
been established by Ragozin [8J, Wahba [14J, Craven and Wahba [3],
Utreras [13J, and others.

Ragozin [8] gave estimates for If - fAlj,j=O, 1, ..., k, withfEHk[O, 1],
k :::;; m. His main result is

THEOREM 1 (Ragozin). For j:::;; k:::;; m there exist constants f3 = f3(m, k, j)
such that for fEHk[O, 1]

(3)

Thus for j = k = m we have

(4)

Inequality (4) does not allow us to prove that IfA - fl m goes to zero as
A-+ 0. Our aim in this paper is to give sharper estimates for the error
If- fAlj' Moreover, we analyze how the values off and its derivatives at °
and 1 affect the convergence rates.

To do this, in Section 2 we write the solution fA as an expansion in terms
of the eigenfunctions of the operator D 2m satisfying appropriate boundary
conditions; we also give an expression for the error If - IAI6. In Section 3
we give a detailed discussion of the properties of the Fourier coefficients (or
Birkhoff coefficients) of1 in terms of the values of1 and its derivatives at
the end points of the interval. Finally, in the last section we apply this
result to the study of convergence rates for the Tikhonov regularization
procedure. We find that these bounds are strongly dependent upon the
boundary conditions that f and its derivatives satisfy at °and 1.

2. THE FOURIER EXPANSION

Consider the eigenvalue problem

( _l)m D 2mljJ = IlljJ,

ljJ(j)(O) = ljJ(j)(I) = 0, j=m, ..., 2m -1.
(5)
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It is well known (cf. [6]) that the eigenvalues J1i of (5) satisfy

J10=J11 =J12= ... =J1m-l =0,

J1i>O, i~m.
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Moreover, the eigenspace corresponding to the eigenvalue °is Pm _ 1, the
set of all polynomials of degree m - 1 or less.

Let if! 0' ... , if! m_ 1 be an orthogonal basis for Pm _ I such that

i=j,

i of:. j,
(6)

and let {if! i}' i ~ m, be an orthonormal set of eigenfunctions of (5) where

and each J1i appears a number of times equal to its multiplicity. Then
{if! ;} go is a complete set of orthonormal functions in H O[0, 1] = L 2 [0, 1J
and f E H k [0, 1] can be expanded in the generalized Fourier series

(7)
n~O

where

(8)

Let U E Hm[O, 1]. Then, for n ~ m

Un = ( u(x) l/Jn(x) dx

( l)m 1=----f U(X)l/J~2m)(x)dx
J1n 0

(9)

But l/J~m) is also a complete orthogonal system in L 2[0, 1] (see [5, p. 147])
and u(m) E L 2 [O, 1]. Thus
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converges and Parseval's theorem gives

= L finu~ = L finU~.
n~m n~O

Also f - U EL 2[0, 1], which entails that

n?:O

Substituting (10 )-(11) into (2) our minimization problem becomes

The solution is the function u with Fourier coefficients

and, hence,

(10)

(11 )

(12)

(13 )

(14)

We therefore see that the properties of If - f;.lo will depend strongly on the
behavior of in and fin' Now we turn our attention to this problem.

3. THE BEHAVIOR OF THE FOURIER COEFFICIENTS

From the definition of in and ljJ n we get
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and integrating by parts m times we get for fEH2m [O, 1]
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In=~ II (-lY [l/t~m-j-I)(1)f(m+j)(I)-l/t~m-j-I)(O)f(m+j)(O)]
fl.n i~O

( 1)m 1
+---- f l/tn(X) f(2m J(x) dx. (15)

fl.n 0

The most convenient case for our purposes occurs when the first part
vanishes. In this case we easily prove

THEOREM 2. Let fE H 2m [0, 1] satisfy

fUJ(l) = fU)(O) = 0,

Then

Proof According to (15) we have

j = m, ..., 2m - 1. (16 )

(17)

Butf(2m)EL2[0, 1] and {l/tn} is an orthonormal basis for L 2[0, 1]. Thus
Parseval's theorem gives

00 oc

I [J~2m)]2 ~ I [j(2m)]2 = Ip2m)16.
n=m n=O

We now use this and (14) to get

If - /,\16 = A2 I (1 :~{~ )2
n~O ·fl.n

= },2 I fl.~J~
n~m (1 + A,u,Y

_)2 fl.~[]~2m)J2

-. I (1 + Afl. )2,u2
n~m n n

n";3-m

This concludes the proof. I
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This is the result given by Locker and Prenter [4] since their condition
becomes in this case fER((D m )* (Dm

)) which entails the boundary
conditions (16).

We now proceed to study the effect of the boundary on the convergence
rates. From (15) we obtain

1 m-l
Ifni ~- L Ilfr~m-j-l)(I)llf~m+j)(1)1

/In j~ 0

+ Ilfr~m-j-l)(O)llf(m+j)(O)1 +~ If~2m)l. (18)
/In

We already know the behavior of the last term, we now turn our
attention to the term involving the boundary conditions. To do this we
must bound

and k=O, ..., m-1.

Let us recall the following result due to Stone [11] on the behavior of
the Green's function of a differential operator satisfying regular boundary
conditions.

THEOREM 3 (Stone). The residues of the Green's function for a regular
differential system of order n = 2m are a set offunctions in x and y uniformly
bounded for all x, y on (0, 1).

Let us apply this theorem to the following differential problem

D2m V + (_l)m + 1 '1 V = g,

VU)(O) = VU)( 1) = 0, j=o, ..., m-1.

(19)

(20)

Since it is known (cf. Naimark [7]) that the boundary conditions are
regular, the Green's function has an expansion (cf. Birkhoff [2]) of the
form

(21)

where the f/J:s are the eigenfunctions of (_I)m D2m together with the
boundary conditions (20) and the 'lv's their corresponding eigenvalues in
increasing order. The f/Jv's are normalized by If/JvI6= 1.

We can now prove the following
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LEMMA 4. There exists a constant K depending only on m such that the
eigenfunctions IjJb k=m, m+ 1, ... of(5) normalized by IljJkl6= 1 satisfy

Proof It is well known that (cf. [5 J)

1A. _ ,/,(m)
'f'v- r::--V'v+m'

vi flv + m

and

'1v=flv+m'

Thus

G(x, y; '1) = (_l)m L
J1v+m J.1.v+m

k~m.

v=0,1,2, ... ,

1jJ~':)m(X) 1jJ~':)m(Y)

flv+m-'1

(22 )

(23 )

(24)

and the residues of G at the poles flv + m are given by

Rv(x, y)=(_l)m+lljJ~':)m(x)IjJ~':)m(Y).
flv+ m

(25)

Applying now Theorem 3 we conclude the existence of M>°depending
only on m such that

IIjJ~m)(x~~~m)(Y)1~M,

But (26) implies that

x,YE[O,l]. (26)

I
IjJ~m)(x) I

C ~K, VXE [0, 1J, k=m, ..., (27)
vi flk

where K =JM is independent of k. This concludes the proof. I
Let us now recall the following result for intermediate derivatives (cf.

e.g., Schumaker [10, Theorem 2.4J).

THEOREM 5. There exist constants Cj , j = 1, ..., 2m - 1, depending only
on m such that

II gU)11 ao ~ C)e- jll gil ao + 10 2m
- jll g(2m)11 cx.J

for any gEC 2m [0, 1J and any O<e<!.

(28 )



242 FLORENCIO I. UTRERAS

We now use this result and Lemma 4 to prove the following result on

IlljIlillie" .

LEMMA 6. There exist constants Aj' j = 0, ..., 2m - 1, depending only on
m such that

j=O, ...,m. (29)

Proof As we know, the eigenfunctions ljI k belong to Coo [0, ~].

Thus

all x E (0, 1).

or

Hence II ljI}/m J II 00 = Ilk II ljI1mJ II 00 and from Lemma 4 we obtain

IlljI}/mJII 00 ~ KIl7!2.

We now apply Theorem 5 for g = ljI1m) and f, = Ill; 112m to get

IlljI1m+ jJ II 00 ~ 2CjKIl1m+ j )/2m.

In particular, for j = m

(30)

(31)

(32)

We again apply Theorem 5 but this time to g = ljI k and f, = Ill; 112m . We
obtain

Recalling that

(32) gives

IlljI}1l11 00 ~ Ch4/m2KCm + Ill; (2m-j)/2m2KCmllk)

~4KCmCjllf2m (34 )

which proves (29) for A O =2KCm, A 2m =2KCm, Aj =4KCmCj , j= 1, ...,
2m-I. I

We are now in a position to give the exact behavior of the /;'s.
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THEOREM 7. Let f E HZm[o, 1]. Then there exist constants A o, ..., A zm
depending only on m such that

m-l

Ih:'S; L [lpm+J)(O)1 + Ij(m+J)(l)IJ Am_J_l,u;-(m+J+Il/2m+o(,uI-I).
i=O

(35 )

Moreover, for f satisfying the boundary conditions

j = m, ..., k, m:'S; k < 2m - 1,

then

2m-I-k
Ih :'S;Pi-<k+2)/2m L [lpk+j)(1)l + IPk+j)(O)IJ

i=l

(36)

(k = m - 1 means that either j(ml(O) # a or pm1(l) i' 0).

Proof From (15) we have

l = 2.. mf I (-1 Y[ljJjm- J-l)(l) j<m+J1(l) _l/Jjm- i-ll(O) j(m+J)(O)]
Ili i=O

Taking absolute values and using Lemma 6 we get

1 m-l Ij~(2m)1

fl.f:'S;- L: [lj(m+ JJ (1)1 + Ij(m+Jl(O)IJ IIl/Jill:-J- 1 +_I-

Ili J=O Ili

1 m-l If~(2mJI
:'S;- L [lpm+Jl(l)!+lpm+Jl(O)IJAm_i_lJljm-i-ll/Zm+_'-

,uiJ=O ,Ill

m-l 1
:'S; L: [[pm+JJ(l)1 + Ij(m+JJ(O)IJ Am_J_llll-<m+J+11/zm+-IJ;zmJj.

1=0 Ili
(37)

This proves (34) since j E H 2m [0, 1J implies

L InZm)f Z < + 00,

i~O

hence \J\zm J\ -d) as i -? 00. Equation (36) is obtained from (35) using the
boundary conditions. I
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As we can observe from (36), the rate of decay of the J;'s to zero is
strongly affected by the values of jU) at the boundary. It is clear for
instance that the smoothness of j is less important than the values ofpj) at
the end points of the interval. Thus, for example, even for a very smooth
function (jEH 2m ), the rate of decay will be f.1.i-(m+l)/2m ifj(m)(o) #0 or
j(m)( 1) # O. This fact is going to be of crucial importance in the study of
convergence rates for Tikhonov regularization as we shall see in the next
section.

4. CONVERGENCE RATES FOR THE TIKHONOV REGULARIZER

Let us now recall the expansion for the error that we have obtained in
Section 2, namely,

Suppose that j E H 2m [0, 1J and for some m:::;; k < 2m - 1 we have

j=m, .."k.

Then by Theorem 7 there exists a constant B > 0 such that

j-2 ,,( BII - (k + 2)/m
n --....;;:: rn

A? 2

Ij-/.12:< " Jln (BIl-(k+2)/m)
". 0 "" L., (1 + A ) rn

n ~ m J1n

( All )(2m-k-2)/m
:< BA(k + 2 l/m L --'.r-'-n__----,,...--

"" n;>m (l + Af.1.n)2
(38)

Now we use Birkhoffresults on the behavior of the Jln'S (cf. [2J). That is,
there exist constants iX, 13 > 0 (independent of n) such that

(39)

This gives

( Af3n2m)(2m -k - 2)/m
Ij- j;.I~:::;;BA(k+2)/m "

n;-m (1 + iXAn
2m

)2

(
13) (2m- k - 2)/m (n8)4m - 2k-4

:<B A(k+2)/m "
"" ; L., (1 + (n8)2m)2'

Il~m
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with 8 = (c(.,{)1/2m. But w(x) = x4m-2k-4/(1 +X2m )2 IS

o~ X < Xo and decreasing for Xo < x where

_ J4m-2k-4
X o- 2k+4'

Hence

8 n~m W(n8)=8[ntm w(n8)+ n~~+l W(n8)],

where p is such that p8 ~ X o< (p + 1) 8. Then

8 f w(n8) ~ j"" w(x) dx
n~ p+ 1 pe

and

f
pe

8 I w(n8) ~ w(x) dx.
n=m 0

Moreover,

w(p8) ~ W(Xo) = constant.

Thus, finally,

1L: w(n8)~[Im.k+8w(xo)Je
n~m
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increasing for

(40)

where

(42)

is bounded since 4m > (4m - 2k - 4) + 2. We thus get

If - f.<l6 ~ B (~rm -k-2 C< -1/2m[Im. k + W(Xo) Il l /2m] It (2k + 3)/2m. (43)

Let us now examine the error in the mth derivative. We have
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Using (37) again, we get
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A2 2
If -f 12 ~ B " J1n lI(m-k-2)/m

).m- L. (1+A )2 r nn;>m J1n

(A )(3m-k-2)/m
5:::BA(k+2-m)/m I ~J1...:.:n~_~_

'" n;> m (l + AJ1n)2

Now replacing Birkhoff inequalities for the eigenvalues gives

(A{3n2m) (3m - k- 2)/m
If -f 12 ::::; BA(k+2-m)/m " ..:.......:...-...:.....-----;:----,,---

). m L. (1 + Aan2m )2
n~m

(

{3)(3m - k- 2)/m (On )6m - 2k- 4
5:::B A(k+2-m)/m "
'" ~ n;-m (1 + (On)2m)2'

where 0 = (aA)1/2m. This gives, after some algebra,

(44)

(45)

({3)

(3m-k-2)/m
If - /;.I~::::;B ~ a- 1/2m [Jm,k + W(Xo)1/2m J A(2(k-m)+3)j2m.

(46)

Here

r m - 2k - 4

w(X) = (1 + X2m)2'

w'(Xo) = 0,

00 r m - 2k - 4

Jm,k= fa (1+X2m )2 dX

is convergent since 4m > 6m - 2k - 4 + 2 (m::::; k).
Let us now state the main result of this paper.

THEOREM 8. LetfEH2m [0, 1J be such that

(47)

j=m, ...,k,

where m - 1 < k::::; 2m - 2 is a given integer. (If k = m - 1 none of these con­
ditions are satisfied.) Then there exist constants Dj , k, 0::::; j ::::; m, independent
of A such that for A< (1/2?m we have

If -f 125:::D. A(2k+3-2j)/2m
.Ie J '" J, k , j=o, 1, ..., m.
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Proof From (43) and (46) there exist constants R O• b R m • k depending
only on m, k such that

if - f).I~~Ro,k,.l(2k+3)/2m

If - j,ll~ ~ R m. k ,.l(2(k-m)+3)/2m

for ,.l < (1/2)2m < 1 where

(48)

(49)

We now use Agmon's theorem (cf. Theorem 5) to conclude the existence
of Ao, ... , Am depending only on m such that

for 0 < e < 1. Let us take e = ,.l 11m and get

If -f. 12 ~ A(,.l - jimR ,.l (2k+ 3)f2m +,.l(m- j)lmR ) (2(k-m) + 3)/2m)
A ) --:: ) 0, k m, k •

~ A(Ro, k + R m. d,.l (2(k-j)+3l/2m

which proves the theorem for Dj , k = Aj( Ro, k + Rm , Ie)' I

The effect of the values off at the boundary is clearly established in this
theorem; for instance, if fEH 2m [O, IJ does not satisfy any special con­
dition, the error in the function is If - fJ ~ ~ constant ),1 + 11

2m
. However, if

f(m)(O)=f(m)(l)=O, If - f).I~~constant ,.l1+3/2m without any additional
hypothesis on the smoothness of f

In smoothing by spline functions it is of interest to study the error in the
smoothing process. One of the error terms is the Integrated Mean Square
Error (IMSE). We can connect this IMSE to if - f).1 ~ by observing the Ii
is "an approximation" to Sn,)., the smoothing spline defined as (cf.
[13, 14J) the solution to

where

(2i - 1) 1
t = 2 ;;' i= 1, ..., n.
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It is shown in [8J that the IMSE in the smoothing of noisy data is given
by

If we consider If - fd6 as a good approximation to If -Sn,AI6 (cf. [13])
we conclude that

IMSE ~ RDo,k A(2k+ 3)/2m.

This extends the results of Rice and Rosemb1att (cf. [9]) for cubic
smoothing splines (m = 2) and allows us to expect for general m the result

if - Sn, AI] = 0(..1 (2(k- j) + 3)/2m),
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